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Abstract

Classical quantitative genetic analyses estimate additive and non-additive genetic and

environmental components of variance from phenotypes of related individuals without

knowing the identities of quantitative trait loci (QTLs). Many studies have found a large

proportion of quantitative trait variation can be attributed to the additive genetic variance

(VA), providing the basis for claims that non-additive gene actions are unimportant. In this

study, we show that arbitrarily defined parameterizations of genetic effects seemingly

consistent with non-additive gene actions can also capture the majority of genetic varia-

tion. This reveals a logical flaw in using the relative magnitudes of variance components

to indicate the relative importance of additive and non-additive gene actions. We discuss

the implications and propose that variance component analyses should not be used to

infer the genetic architecture of quantitative traits.

Author Summary

There has been a great amount of debate over the relative importance of additivity and
non-additivity in quantitative trait variation. The main argument supporting the impor-
tance of additivity is the observation that the additive component of genetic variance is
much greater than non-additive variance components, while the main argument sup-
porting the importance of non-additivity is the identification of many non-additive
effects in genetic mapping studies. By recapitulating many classical results and introduc-
ing new alternative parameterizations of genetic effects, we point out some of the com-
mon mistakes and misleading arguments in using variance component analyses to infer
genetic architecture, specifically the gene actions of QTLs. Because of the wide applica-
tions of variance component analyses, our study has profound implications and clarifies
some of the most confusing concepts in quantitative genetics in the genomics era.
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Introduction

Nearly a century ago, R. A. Fisher solved the apparent discrepancy between rules of Mendelian
inheritance for alleles with large effects at one or a few loci and the resemblance among rela-
tives for quantitative traits with a continuous distribution of phenotypes in natural populations
[1,2]. He did this by postulating that many loci with small individual allelic effects caused
genetic variation for quantitative traits, and that simultaneously random environmental varia-
tion contributed to the continuous phenotypic variation. Rather than assuming the dominant/
recessive gene action common for Mendelian loci, he assumed a more general model of gene
action at a single locus that could account for any relationship between homozygous and het-
erozygous allelic effects and derived expectations of the magnitude of genetic variance contrib-
uted by many such loci in an outbred population, and, importantly, the expected correlations
between common relatives [1,2]. This laid the foundation for the now classical partitioning of
genetic variance for quantitative traits in terms of additive (VA), dominance (VD), and inter-
locus interaction (epistatic) variance (VI) components [2]. This theory has been exceedingly
influential in animal and plant breeding, evolution, and understanding of human complex
traits. The additive genetic variance,VA, is of particular importance because it defines the level
of narrow sense heritability (h2), which in turn determines the fraction of the total variance of a
quantitative trait that is transmissible from generation to generation, resemblance between rel-
atives and the rate of short-term response to natural or artificial selection from standing varia-
tion [3], without knowing the details of the underlying genes.

For the past 25 years, with the advent of molecularmarkers, the goal of molecular quantita-
tive genetics has been to define the genetic architecture of quantitative traits by identifying the
quantitative trait loci (QTLs) underlying quantitative genetic variation as well as the causal
molecular variants. One important aspect of the genetic architecture of quantitative traits is the
gene actions of QTLs, whether allelic effects are additive within and across loci, one allele is
dominant over another, or the effect of one QTL is dependent on the genotype at another
locus. The partitioning of genetic variation into VA, VD, and VI seems to offer a convenient
indication of the gene actions of QTLs. For example, the role of epistasis in the genetic architec-
ture of quantitative traits has been surprisingly contentious, despite ample evidence for epi-
static interactions betweenmutations and between quantitative trait loci from studies in model
organisms ([4] and references therein) and our general understanding of non-linearity in bio-
chemical, developmental and metabolic networks [5]. The prevailing argument has been that
epistasis is not important because it gives rise to mostly VA, and it is VA that determines corre-
lations among relatives and response to selection [6,7]. Here, we show how this argument arises
and why it is misleading; illustrate this point by developing alternative parameterizations of
genetic variance that also lead to large proportions of genetic variance apparently due to non-
additive gene action; and discuss the implications of the lack of correspondence between
homozygous, heterozygous and epistatic interaction effects and additive, dominance and inter-
action variance components.

Results

VA is a major determinant of total genetic variance under the classical

model

To show the relationship between gene action and classical partitioning of genetic variation, we
first consider simple models of genetic architecture that involve one or two loci. Following con-
ventional notation, we arbitrarily assign the genotypic value of the three possible genotypes aa,
Aa, and AA at a single bi-allelic locus as −a, d, and +a respectively[2]. Additive and dominant
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gene actions or genetic models have a clear meaning with this parameterization. An “additive”
genetic model refers to the situation in which d = 0, and hence there is a perfect linear relation-
ship between the genotypic value and the number of copies of A alleles. A “dominant” genetic
model is when d = ±a, or when the genotypic value is solely determined by the presence of the
dominant allele.VA (see Table 1 for this and other notations and definitions used throughout
this study) accounts for the entirety of genetic variation when the true geneticmodel is an addi-
tive model (Fig 1a). VA also explains the majority of genetic variation under the dominant
genetic model unless the dominant allele is at high frequency (Fig 1b). Extending this single-
locusmodel to two unlinked loci, we see that VA also captures the majority of overall genetic
variance—unless alleles at both loci are common—under a two-locus “additive by additive”
genetic model (Fig 1c and 1d).

Ideally, a variance component partition should have a one-to-one corresponding relation-
ship with gene actions in order for it to measure the relative importance of gene actions

Table 1. Notations and definitions of variance components in this study.

Notation Variance component Genotype coding

VA 2pq[a + d(q − p)]2 xA2 {0, 1, 2}

VD (2pqd)2 xD2 {0, 2p, 2(p − q)}

V 0D 4pq2

1þq ðaþ dqÞ
2 x0D 2 f0; 2; 2g

V 0A 2p2q
1þq ða � dÞ

2
x0A 2 0; 1� q

1þq ;
� 2q
1þq

n o

V 00AA computed numerically x00AA 2 ðxA;1 � 1ÞðxA;2 � 1Þ

doi:10.1371/journal.pgen.1006421.t001

Fig 1. Additive genetic variance VA is a major determinant of total genetic variance. Under additive (a),

dominant (b), or additive by additive (c, d) models, the proportion of total genetic variance explained by the

additive genetic variance VA and dominance genetic variance VD are estimated either analytically (a, b) or

numerically by simulation (d).

doi:10.1371/journal.pgen.1006421.g001
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(Fig 2a). The classicalVA + VD + VI partition obviously does not possess this property, despite
it being an orthogonal partition (uncorrelated variance components) and having suggestive
names, i.e., additive genetic variance for VA, dominance genetic variance for VD, and epistatic
genetic variance for VI (Fig 2b). Notably, except for additive gene actions, which contribute
only to VA, both dominant and epistatic gene actions contribute to multiple variance compo-
nents (Figs 1 and 2b). The specific amount of genetic variation each type of gene action con-
tributes depends on the genetic architecture or may even be unmeasurable because different
types of gene actions may not be independent from each other. Nonetheless, it is clear that this
classicalVA + VD + VI partition is a poor indicator of the underlying genetic architecture;

Fig 2. Relationship between gene actions and variance components. (a) Ideally, the variance generated by each

type of gene actions is mutually exclusive therefore variance components provide a measure of relative importance of

gene actions. (b) In the classical VA + VD + VI variance partition, additive genetic variance VA has contribution from all of

additive, dominant, and epistatic gene actions in most circumstances. With the alternative parameterizations, all types of

gene actions contribute to V 0D (c) and V 00AA (d) in most circumstances.

doi:10.1371/journal.pgen.1006421.g002
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purely epistatic genetic architecture can often result in a partition whereVA is large but VI is
small (Fig 1d). These results are not new and have been previously shown by many authors
[2,4,6] but are recapitulated here to set the stage for the following results so that one can con-
trast alternative parameterizations with them.

The apparent disconnect between gene action and variance components in the classical
model is the basis for the statements that epistatic varianceVI can be neglected because epista-
sis contributes mostly to VA and VI is correspondingly small [6]. This is undoubtedly true but
vastly misleading.VI is the residual genetic variance afterVA has beenmaximized and bears no
genetic meaning even though it is called epistatic variance. Indeed, textbooks point out a possi-
ble misunderstanding and warn that “the concept of additive variance does not carry with it the
assumption of additive gene action; and the existence of additive variance is not an indication
that any of the genes act additively (i.e., show neither dominance nor epistasis)” [2].

Alternative parameterizations also capture the majority of genetic

variance

The way genetic effects are parameterized in the VA + VD + VI partition necessarily leads to
large VA. This property is best illustrated by the least squares interpretation in a single locus
case (Fig 3), in whichVA is the type I sum of squares of regressing genotypic values onto copy
number of alleles whileVD is the residual variance. The least squares solution of this regression

Fig 3. Least squares regression interpretation of VA. This representation is adapted from Fig. 7.2 of

Reference [2]. Grey circles indicate the genotypic value of each genotype, which is coded as 0, 1, 2 for aa,

Aa, and AA respectively. A regression line (red line) is fitted to the data, on which the fitted values are

indicated by white circles. The fitted line must pass through the center of the data, as indicated by the cross.

The fitted values are equivalent to breeding values. The arrows between the breeding values and the

genotypic values are the dominance deviations, which are the same as residuals of the regression. Note that

the data points are weighted by their frequencies in the population. A dominance model is used so that the

dominance deviation can be illustrated.

doi:10.1371/journal.pgen.1006421.g003
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attempts to maximizeVA and minimizeVD given the assumed additive genetic model, regard-
less of the actual genetic architecture. The key point, which is often neglected, is to realize that
VA is large not because of the underlying genetic architecture but of the assumed genetic archi-
tecture and its corresponding parameterization.When the assumption and parameterization
change, the partitioning of variance components also changes.

Perhaps the best way to counter the argument that large VA is evidence for unimportance of
non-additive gene actions is to derive alternative ways of partitioning variance where one of
the non-additive components dominates others, a property that has been shown previously
only for VA. This turns out to be easy if the non-additive components are given the priority to
explain the genetic variation, as doesVA in the classical model. Using a single-locus parameter-
ization in which the heterozygotes and the homozygotes for the dominant allele are coded
identically, we define an alternative dominance varianceV 0D (Table 1, the prime symbol is used
to distinguish this variance from the conventional dominance varianceVD), which is the type I
sum of squares of regressing genotypic values onto the dominant allelic coding (Table 1; Fig 4).
Consistent with its assumed genetic model,V 0D captures the entire genetic variance when the
true genetic model is a completely dominant model (Fig 5a). Even when the genetic model is
perfectly additive, V 0D captures the majority of genetic variation (Fig 5b). This result is remark-
able because a variance component V 0D under the alternative parameterization seemingly

Fig 4. Least squares regression interpretation of V 0D. Grey circles indicate the genotypic value of each

genotype, which is coded as 0, 2, 2 for aa, Aa, and AA respectively. A regression line (red line) is fitted to the

data, on which the fitted values are indicated by white circles. The fitted line must pass through the center of

the data, as indicated by the cross. The fitted line must also pass through the circle (half grey and half white

to indicate the overlap of the genotypic and fitted values) denoting genotype aa. The fitted values are

equivalent to dominance values as defined in this parameterization. The arrows between the dominance

values and the genotypic values are the residuals of the regression, which we define as “additive deviation”,

therefore the residual variance is V 0A. Note that the data points are weighted by their frequencies in the

population. An additive model is used so that the additive deviation can be illustrated.

doi:10.1371/journal.pgen.1006421.g004

Variance Partitioning for Quantitative Traits

PLOS Genetics | DOI:10.1371/journal.pgen.1006421 November 3, 2016 6 / 15



corresponding to the dominant gene action has similar properties and variance explaining abil-
ities as VA (Fig 2c). Furthermore, an alternative two-locus parameterization (seeMethods)
allows the V 00AA variance component (Table 1) to explain the entire genetic variance with an
additive by additive genetic model (Fig 5c) while still capturing a majority of genetic variance
under most circumstances when the genetic model is purely additive (Figs 5d and 2d).

Classical and alternative parameterizations capture the majority of

polygenic genetic variance

To extend the single- and two-locus results to polygenic genetic models, we simulated geno-
types and phenotypes based on pre-defined genetic architectures (gene actions) and broad

Fig 5. Alternative parameterizations capture the majority of genetic variance. Using an alternative parameterization

that emphasizes dominant gene action, a newly defined dominance variance V 0D and additive deviation variance V 0A are

estimated analytically under dominant (a) and additive (b) models. Using an alternative parameterization that emphasizes

additive by additive gene action, a newly defined interaction variance V 00AA is estimated numerically under additive by

additive (c) and additive (d) models.

doi:10.1371/journal.pgen.1006421.g005
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sense heritability (H2), and usedmixed models to partition phenotypic variance under the
classical and alternative parameterizations described above. As expected, when the genetic
parameterizations and the corresponding genetic covariance matrices match the true genetic
models, the estimated variances fully explain the total genetic variances (Fig 6a–6c). Intrigu-
ingly, similar to the single- and two-locusmodels, all genetic parameterizations are able to
capture a large (almost always> 40%) fraction of total genetic variances regardless of the true
genetic architecture (Fig 6a–6c). Among the three parameterizations, the classical definition
of VA appears to explain the most genetic variance when the genetic model does not match its
parameterization. This is likely because the genotypic coding under the conventional additive
parameterization is insensitive to the sign of the allelic effects; while the dominance parame-
terization requires prior knowledge of the dominant allele, and the additive by additive
parameterization requires prior knowledge of the interacting pairs. Nonetheless, it is remark-
able that even with random assignment of the dominant allele or random pairing of loci and
obvious mischaracterization of the genetic model,V 0D and V 00AA are able to explain the majority
of genetic variance when the genetic architecture is additive within and between loci, respec-
tively (Fig 6b and 6c).

VA, V 0D, and V 00AA explain a large fraction of phenotypic variance for

human height

It has been previously shown that VA accounts for a large fraction of phenotypic variance in
human adult height using a genetic covariancematrix computed from genome-wide SNP data
under the conventional parameterization [8]. Based on our above results, we necessarily expect
this observation regardless of the true genetic architecture for human height. We indeed recapit-
ulated this result using genotype and height data for individuals from the GENEVA project (Fig
7). We then asked if our alternative parameterizations of V 0D and V 00AA can performwith real data
as they do in simulated data (Fig 6b and 6c). Remarkably, under the naive assumptions that
minor alleles are recessive and by randomly pairing interacting SNPs, bothV 0D and V 00AA can
explain a substantial fraction of phenotypic variance, with even larger point estimates than VA

Fig 6. Conventional and alternative parameterizations capture the majority of polygenic genetic variance. Simulation is

used to generate data sets with the additive (A), dominant (D), and additive by additive (AxA) genetic models and VA, V 0D and V 00AA are

estimated using linear mixed models. The results are presented as the proportion of heritability explained by the genetic variance

component; h2
a corresponds to VA (a), h2

d0 to V
0
D (b), and h2

aa00 to V
00
AA (c).

doi:10.1371/journal.pgen.1006421.g006
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(Fig 7). This is important, becauseV 0D and V 00AA and their corresponding parameterizations are
consistent with dominant and epistatic gene actions. If we use the same argument that large VA

in the classical model suggests the unimportance of non-additive gene actions, large V 0D and V 00AA
in the alternative parameterizations suggest the unimportance of additive gene actions. Neither
argument is correct.

To further illustrate how parameterizations may affect genetic variance partitioning, we
focus on the simple task of partitioning “additive” and “dominance” variances. A recent study
reported a major contribution of VA (additive variance) and a minor contribution of VD (domi-
nance variance) for a number of quantitative traits, using the classical parameterization for the
additive genetic variance to estimate VA, and a frequency-dependentparameterization
(Table 1) orthogonal to the additive genetic value to estimate VD[9]. This observation led to the
conclusion that dominance variation contributes little to quantitative trait variation. We
observed similar relative contributions of VA and VD for human height in the GENEVA data
(Fig 7). However, as we have illustrated above, this is only one of the many possible ways of
partitioning variance. Using our alternatively defined parameterizations and a similar fre-
quency-dependent parameterization orthogonal to the dominant genetic value (Table 1), we
find a much more substantial contribution of dominance variance, i.e.,V 0D (Fig 7). The key dif-
ference between this alternative partitionV 0D þ V 0A and the classicalVA + VD (VI is ignored
here) is that the variance component seemingly consistent with the dominant gene action is
allowed to explain the variance first, while the “additive” component (V 0A) only enters the
model after V 0D has beenmaximized (Fig 4). This result clearly demonstrates the problem of
using variance partitioning to measure the relative importance of gene actions, because they
change as the parameterizations and models change.

Fig 7. Variance component analyses of human height data. Phenotypic variation of height (in cm) observed in the

GENEVA study is partitioned into genetic variance components as indicated (color-coded bars) and environmental

variance (Ve, grey bar). The colors of bars correspond to the colors of the text indicating the variance components. Error

bars indicate standard errors of the variance component estimates provided by GCTA. Proportions of the components are

also indicated.

doi:10.1371/journal.pgen.1006421.g007
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Discussion

Here, we have re-iterated the well-known observation from classical quantitative genetics the-
ory that VA contributes the majority of the genetic variance in an outbred population regardless
of the underlying gene actions at individual loci and across loci [2,6]. However, the inference
that therefore, epistatic gene action can be ignored because the epistatic varianceVI is small is
not correct, although this viewpoint is pervasive in the literature. For example, Crow [7] con-
cludes that epistasis is unimportant in polygenic selection on the basis that most genetic
variation is VA, ignoring the fact that epistasis contributes to VA. Bloom et al. [10] use the
observation that the small difference betweenH2 (which measures total genetic variance) and
h2 (which measures additive genetic variance) for some yeast quantitative traits as evidence
that there is little epistasis, mistakenly equatingVA with variance due only to additive gene
actions. Maki-Tanila and Hill (2015) analytically derive multi-locusmodels showing that “epis-
tasis makes substantial contributions to additive variance”, while at the same time inferring that
the existence of epistasis “does not imply that . . . it will contribute much genetic variation” [11];
an apparent inconsistency since it contributes substantially to VA.

We have shown that our alternative parameterizations for V 0D and V 00AA also capture the
majority of the total genetic variance in simulated as well as real data. Using the same incorrect
logic, we could infer that V 0A and V 0I are unimportant using the V 0D parameterization; and V 00A
and V 00D are unimportant using the V 00AA parameterization. Neither the classical nor the alterna-
tive partitions of genetic variance offers any information regarding whether the majority of var-
iance is due to a specific type of gene action. In natural populations, whether one of these ways
of variance partitioning is more useful than another depends on the true underlying genetic
models. Though it is impossible to determine a clear winner, it is obvious that VA fully explains
genetic variation under an additive model,V 0D under a dominant model, and V 00AA under an
additive by additive epistatic model. Therefore it seems only appropriate to defineVA as the
additive variance when the genetic model is additive, but to defineV 0D rather than VD as the
dominance variance when the genetic model is dominant, and to defineV 00AA as the epistatic
variance when the genetic model is entirely additive by additive.

The crux of the problem is the undesirable feature of the classical model as well as the alter-
native parameterizations that there is not a one-to-one correspondence between gene action at
underlying quantitative trait loci and the partitioning of variance components except under
very specific and restrictive circumstances (Fig 2). Under the classical model, epistasis and
dominant gene action both contribute to VA, so the relative magnitude of different gene actions
cannot be inferred from the relative magnitude of different genetic variance components. A
large VA and smallVD and VI mean nothing more than a specific partition of genetic variance
and there are potentially an infinite number of such partitions, some having larger seemingly
additive components than others.

The ability of arbitrarily defined parameterizations to capture the majority of genetic vari-
ance shares analogy with the ability of the type I sum of squares to explain variance that is not
always attributable to the experimental factor when the experimental design is not orthogonal.
In genetic studies, an orthogonal design is not always achievable and impossible in natural
populations. In fact, partitioning genetic variance according to different gene actions can be
thought of as defining experimental treatments after the experiments have been performed.
This is clearly not an ideal statistical practice, though there is no obvious alternative. There
have beenmany attempts to partition genetic variance with the aim to better reflect the under-
lying contribution of different types of gene actions [12–14]. All of these methods involve
certain ways of coding genotypes to partition genetic effects. To ensure that the variance com-
ponents are uncorrelated or orthogonal, these genotyping codings typically need to be allele
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frequency dependent. Despite these clever attempts and useful properties in some circum-
stances, their usefulness is limited because in most cases, any attempt to partition variance into
components that correspond to different types of gene actions is destined to fail unless the
gene actions happen to be statistically orthogonal. However, the additive and dominant gene
actions as commonly defined (Fig 1a and 1b) are two intrinsically inseparable terms and not
orthogonal. For an allele to be dominant over another (a 6¼ 0,d = ±a), there must necessarily be
additive homozygous effects (a 6¼ 0). This is the root of the confusing convolution of different
variance components, especially when not clearly defined.

Although it is not informative about genetic architecture and has its own problem when the
genetic architecture does not fit the assumptions [15], we are not suggesting that the classical
method of partitioning variance components be abandoned. The classical model, and particu-
larly the concepts of VA and h2, have been and will continue to be the foundation of quantita-
tive genetics, predicting resemblance between relatives and response to selection: they inform
us about the proportion of phenotypic variation that is “breedable” [3]. The brilliance of this
model is that it describes the behavior of quantitative traits across generations in the absence of
detailed knowledge of the elements of the genetic system.We are also not suggesting that our
alternative parameterizations are in the least bit useful—they are not. We constructed them as
illustrative examples of the fallacy of the argument proposing that a mode of gene action is not
important because the first variance component fit in the model subsumes contributions from
that model of gene action. Rather, we are suggesting that we understand and accept the limita-
tions of the assumptions of the classical model and do not relate empirically useful parameters
such as VA and h2 to any inferences of underlying gene action. Furthermore, rapid conceptual
and technological advances are presenting new challenges, therefore the classical paradigm
needs expansion, modification, or revolution to cope with these challenges [16].

We need to separate the goal of using quantitative genetics to predict phenotypes across gener-
ations with that of understanding themolecular genetic architecture of complex traits and predict-
ing individual quantitative trait phenotypes from genotypes, which is a within-generation
endeavor. This is especially true for understanding and utilizing non-additive gene actions because
contributions to phenotypes from dominance and epistasis are not transmissable to the next gen-
eration. For example, under an epistatic model in which a particular combination of alleles at
multiple loci causes disease, we want to know the susceptible genotype to predict individual phe-
notype as well as the molecularmechanisms of the genetic interaction, which requires knowledge
of the geneticmodel. This is akin to the well-known distinction between “statistical” and “physio-
logical” epistasis, where the former is concernedwith variance component decomposition and
the latter with genes and gene action [12,14]. This distinction is not possible whenQTLs are
unknown, such is the case in classical biometrical treatment of quantitative traits.With the avail-
ability of abundant molecularmarkers, QTLs can bemapped with great precision. This provides
the basis to determine the gene actions of mapped QTLs rather than using variance component
analysis to infer them, which, as we have demonstrated, is impossible. Determination of genetic
architecture even after QTLs are identified is non-trivial and may involve a combination of statis-
tically evaluating and experimentally testing different models, such as through editing specific
genes in a defined genetic background.Nonetheless, the controversy over the importance of epis-
tasis can only be resolved by mapping all QTLs and determining their modes of inheritance.

Methods

Least squares regression interpretation of VA

Consider a single biallelic locus in a diploid genome with alleles A and a, each with frequency p
and q(p + q = 1); and assign genotypic values y = − a, d, and +a to genotypes aa, Aa, and AA

Variance Partitioning for Quantitative Traits
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respectively. The average effects of A and a are then qα and − pα respectively, where α = a + d
(q − p) is the allele substitution effect and measures the change in phenotype in an individual if
an allele a is substituted with A [2]. The breeding value, defined as the expected genotypic
value of the progeny an individual produces, is the sum of average allelic effects each diploid
individual carries, and is − 2pα, qα − pα, and 2pα for aa, Aa, and AA respectively. With only
one locus, the total genetic variation in a randomly mating (thus in Hardy-Weinberg equilib-
rium) population can be partitioned into two orthogonal components, the additive genetic var-
iance VA, which is defined as the variance due to breeding values, 2pqα2, and the dominance
genetic varianceVD = (2pqd)2 (Table 1) [2].

Alternatively, we can define a random variable xA as:

xA ¼

0; genotype ¼ aa;

1; genotype ¼ Aa;

2; genotype ¼ AA:

8
><

>:

This parameterization has the convenient interpretation that xA is equal to the number of A
alleles. It is easy to show that the allele substitution effect α as defined above is the slope of the
least squares regression of genotypic value y on xA in an idealized population with random
mating (Fig 3). The additive genetic variance is then VA = Var(ŷ) = Var(αxA) = α2Var(xA) =
2pqα2 and the dominance genetic varianceVD is the residual variance. It is easy to see that the
least squares solution for this regression seeks to maximizeVA and minimizeVD. This least
squares interpretation is not new and dates back to the early days of quantitative genetics [1].

By extension of this least squares regression interpretation of genetic variation, if we arbi-
trarily define any one random variable x or more than one of them and fit a linear model of
form y = βx + �, we can partition genetic variance due to the assumed genetic modelVar(ŷ) =
Var(βx) and residual varianceVar(�).

Derivation of dominance variance V 0D using least squares regression

Now we illustrate the idea of using least squares regression to partition genetic variance due to
dominant gene action and the remaining genetic variance.We define the random variable x0D
as:

x0D ¼
0; genotype ¼ aa;

2; genotype ¼ Aa or AA:

(

The least square solution for the linear model y ¼ d
0x0D þ � can be easily found to be

d
0
¼

q
1þq d þ

1

1þq a (Fig 4). Therefore the variance due to x
0
D is V 0D ¼

4pq2

1þq ðaþ dqÞ2. The residuals

from this regression are 0, 1� q
1þq ðd � aÞ, and � 2q

1þq ðd � aÞ, for genotypes aa, Aa, and AA respec-
tively. Similar to VA and VD, we define the residual variance as an “additive deviation” variance
V 0A, which can be found to beV 0A ¼

2p2q
1þq ða � dÞ2.

Finding V 00AA numerically

Extending the least squares regression interpretation of genetic variance to any arbitrary ran-
dom variable x and finding the solution is not always easy. However, it is computationally triv-
ial to find. For example, to numerically estimate the additive by additive varianceV 00AA, we
define x00AA as follows for two independently segregating loci with alleles A/a, and B/b
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respectively:

x1 ¼

� 1; genotype ¼ aa;

0; genotype ¼ Aa;

1; genotype ¼ AA:

8
><

>:
; x2 ¼

� 1; genotype ¼ bb;

0; genotype ¼ Bb;

1; genotype ¼ BB:

8
><

>:

Then, x00AA ¼ x1x2. We randomly draw 100,000 individuals with the specific genotypes
according to pre-defined allele frequencies and assign genotypic values with pre-defined
genetic models. The slopes b̂ can be easily found by numerically regressing y onto x. The pro-
portion of genetic variation explained by this parameterization is then just the R2 of the
regression.

Mixed model analysis of simulated and real data

To extend the single- and two-locusmodels to polygenic models, we usedmixed model analy-
sis to partition phenotypic variation in simulated and real data. To simulate phenotypic data
with pre-defined genetic models, we first drew 1,000 realizations from the U-shaped distribu-
tion [6] f ðpÞ / 1

pq, which took possible values of 0.01, 0.02, . . ., 0.99. Genotypes for these
p = 1,000 loci were randomly assigned according to their Hardy-Weinberg frequencies to
n = 5,000 individuals. Genetic values were then assigned to the 5,000 individuals using this gen-
eral formula g = Xβ. Each of the columns of the n × pmatrix X was coded by the additive
parameterization xA as defined above for the additive genetic model, x0D for the dominance
genetic model. Similarly for the additive by additive genetic model, p

2
¼ 500 pairs of loci were

parameterized as defined above using x00AA. The vector β was drawn from standard normal dis-
tribution. The phenotypic value y for each individual was then simulated by adding random
noise such that Y = g + �, where � was normally distributed with zero mean and variance equal
to Var ðgÞ 1� H2

H2 .H2 was the broad sense heritability and was always set to 0.5.
We standardized columns of X and computed the covariancematrix as XXT, which was fur-

ther scaled by the mean of its diagonal values. A linear mixed modelY = μ1 + Zu + � was fitted
to the data, where μ was the population mean, Z was the incidencematrix and in all cases in
this study the identity matrix, u was a random effect with variance covariance matrix Gσ2,
whereG was simply the scaledXXT above and σ2 was the part of genetic variance due to the
specific parameterization.We fitted this model using the GCTA software[17] with REML and
performed simulations 100 times.We defined the heritability explained by σ2 as h2/H2, where
h2 ¼ s2

s2þs2
�
, andH2 was the simulated broad sense heritability.

To analyze real data where the genetic architecture cannot be known a priori, we down-
loaded genotype and phenotype data from dbGaP for the GENEVA Genes and Environment
Initiatives in Type 2 Diabetes study (phs000091.v2.p1).We pruned the data set to contain
5,497 unrelated (nominal genetic relationship as calculated by GCTA < 0.05) individuals with
European ancestry based on both self-reported ethnicity and principal component analysis.
We then computed genetic covariance matrices as defined above using autosomal SNPs and
partitioned phenotypic variance using GCTA where sex was fitted as a fixed effect in the
model.We used the parameterization (Table 1) as defined in a recent study[9] to partition phe-
notypic variance into VA, VD, and Ve. We also partitioned phenotypic variance into V 0A, V

0
D,

and Ve, whereV 0D was defined as above and V 0A was estimated by defining a new variable x0A
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(Table 1), where

x0A ¼

0; genotype ¼ aa;
1 � q
1þ q

; genotype ¼ Aa;

� 2q
1þ q

; genotype ¼ AA:

8
>>>>><

>>>>>:
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